THE UNIVERSITY of TENNESSEE CKNOXVILLE

Using Large-Scale Matrix Factorizations to identify users of Social Networks

Dr. Michael W. Berry and Denise Koessler In celebration of Robert J. Plemmons 75th Birthday The Chinese University of Hong Kong November 17, 2013

THE UNIVERSITY of TENNESSEE 57 COLLEGE of ENGINEERING

Percent of total calling behavior observed in four different cities

during time *t*

Number of users who spend more than 25% of their total activity during time *t*

Is a mobile customer's mobile behavior unique? Yes

Yves et. al, Unique In the Crowd, March 2013, *Nature*

Do we need *physical* location?

Why is this difficult?

Why is this difficult?

The actual world...

Research Goal:

Given a social network, can we detect key components of user data that uniquely identifies individuals throughout time?

Preliminary Approaches: Social Fingerprinting

Persona

cisula

Time t

Goal:

Accurately identify social network users based on features of a dynamic, labeled graph

Statistics for second neighbor graphs: created from one month of history

Accuracy Max Friends

One Month of History

Need: identification of features

Social Network User A

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

Semidiscrete Decomposition (SDD) [Kolda and O'Leary 1998]

 $A_{nxn} \approx U_{nxk} \cdot \sum_{kxk} \cdot V_{nxk}$ $U_{i,i} \in \{-1,0,1\}$ $\sum_{i,i} = \sigma_i$ $V_{i,j} \in \{-1,0,1\}$

SDD Procedure:

- **1**. Construct matrix A and query vector(s)
- 2. Semidiscrete Decomposition of matrix A to yield rank-*k* approximation
- **3.** Compute new query vector
- 4. Rank the personas wrt cosine similarity
- 5. Evaluate

Construction:

Binary: $A[i,j] \rightarrow$ the presence of the relationship

Construction:

Term Frequency: $A[i,j] \rightarrow$ the *strength* of the relationship

Construction: Query Vectors

SDD of A: k = **3**

$$A_{nxn} \approx U_{nxk} * \sum_{kxk} * V_{nxk}$$

$$A_{5x5} \approx \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6.5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

SDD of A: *k* = *3*

Iteration	Residual	Improvement		Inner	Total
Number	Squared	(beta)		Its	InnerIts
1	1	3.28e+02	9.80000e+01	2	2
2	3	1.78e+02	1.50000e+02	3	5
3	4	9.35e+01	8.45000e+01	2	7

-- SDD information -final residual norm : 9.6695e+00 final relative residual norm: 0.468 total outer iterations : 3 average inner iterations : 2.333 average init iterations : 1.333

Query Vector Reduction

 $q = q^T U_k \Sigma^{-1}$

Similarity between these graphs:

Cosine Similarity: q^{t+1}[j]*V^(t)[i]

	V[0]	V[1]	V[2]	V[3]	V[4]
q[0]	0.8467	0	0	0.5319	0
q[1]	0.0704	0.9859	0.9859	0.1516	0.9859
q[2]	0.2095	0.9778	0.9778	0	0.9778
q[3]	0.2454	0	0	0.9693	0
q[4]	0.1414	0.9899	0.9899	0	0.9899

Future work using SDD:

- 1. An optimal parameter *k*?
- 2. Additional similarity measures
- **3**. How often is a persona ranked in the top 1%?
- 4. When this approach is incorrect, what does the distribution of the correct identity look like?
- **5**. Is there a threshold for inconclusively?
- 6. Find a confidence factor → is there a large separation in scores?

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

Conclusions

We have a triad of issues:

Data Volume

Accuracy

Conclusions from a **Big Data Perspective**:

At this point, we are either:

- Accurate on a small portion of the data on any window of time.
- Accurate on all of the data given infinite amount of storage space

... or ...

 Able to classify volumes of social inferences in real time with low confidence.

References

- R. Becker, C. Volinsky, and A. Wilks. 2010. Fraud Detection in Telecommunications History and Lessons Learned. In *Technometrics*. Vol. 52, No 1.
- C. Cortes, D. Pregibon, and C. Volinsky. 2001. Communities of Interest. InProceedings of the 4th International Conference on Advances in Intelligent Data Analysis (IDA '01). Springer-Verlag, London, UK, UK, 105-114.
- S. Keshav. 2005. Why cell phones will dominate the future internet. SIGCOMM Comput. Commun. Rev. 35, 2 (April 2005), 83-86. DOI=10.1145/1064413.1064425 http://doi.acm.org/10.1145/1064413.1064425.
- A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S. Mukherjea, and A. Joshi. 2006. On the structural properties of massive telecom call graphs: findings and implications. In *Proceedings of the 15th ACM international conference on Information and knowledge management* (CIKM '06). ACM, New York, NY, USA, 435-444. DOI=10.1145/1183614.1183678 <u>http://doi.acm.org/10.1145/1183614.1183678</u>
- J. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J.Kertesz, and A. Barabasi. 2007. Structure and tie strengths in mobile communication networks. In *PNAS.* Vol 104. No. 18. 7332 7336.
- X. Ying and X. Wu. 2009. On Randomness Measures for Social Networks. In SIAM International Conference on Data Mining. 709 – 720.

Copyright 2013

traxedo.com

Copyright 2013

taaxedo.com

Extra slides follow..

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

SDD

Ranking Alternatives:

Structure A and q:
1) Persona x Persona
2) Persona x Time
3) Persona x Persona x Time

Evaluate Performance

> Select Ranking Function: 1) Cosine 2) Euclidean 3) Jaccard 4) Pearson