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Percent of total calling behavior 
observed in four different cities 
during time t

Morning Calls Day Calls Evening Calls Night Calls
City A 9.8% 43.5% 32.9% 13.9%
City B 10.4% 45.7% 33.2% 10.8%
City C 10.3% 45.2% 33.5% 10.9%
City D 10.5% 46.9% 32.5% 10.1%
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Number of users who spend more than 
25% of their total activity during time t
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Is a mobile customer’s mobile 
behavior unique?  Yes

Yves et. al, Unique In the 
Crowd, March 2013, Nature  

Do we need physical location?



Why is this difficult?

??



Why is this difficult?
The actual world…



Research Goal:

Given a social network, can we detect key 
components of user data that uniquely 
identifies individuals throughout time?



Time t

Persona

Preliminary Approaches:
Social Fingerprinting

Goal: 
Accurately identify 
social network users 
based on features of a 
dynamic, labeled 
graph
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Statistics for second neighbor graphs:  
created from one month of history
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Persona

Candidate A

Method: Max Friends

Candidate B

Candidate C
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(10+ Friends in common, 95% Accurate)

Number of Friends in Common 12



Need: identification of features
Social Network User A

Social Network User B



Semidiscrete Decomposition 
(SDD) [Kolda and O’Leary 1998]



SDD Procedure:

1. Construct matrix A and query vector(s)
2. Semidiscrete Decomposition of matrix A 

to yield rank-k approximation
3. Compute new query vector
4. Rank the personas wrt cosine similarity
5. Evaluate



Construction:  
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Construction: Query Vectors
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SDD of A: k = 3



SDD of A: k = 3



Query Vector Reduction



Similarity between these graphs:
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V[0] V[1] V[2] V[3] V[4]

q[0] 0.8467 0 0 0.5319 0

q[1] 0.0704 0.9859 0.9859 0.1516 0.9859

q[2] 0.2095 0.9778 0.9778 0 0.9778

q[3] 0.2454 0 0 0.9693 0

q[4] 0.1414 0.9899 0.9899 0 0.9899

Cosine Similarity: qt+1[j]*V(t)[i]



Future work using SDD:

1. An optimal parameter k?
2. Additional similarity measures
3. How often is a persona ranked in the top 1%?
4. When this approach is incorrect, what does 

the distribution of the correct identity look 
like?

5. Is there a threshold for inconclusively?
6. Find a confidence factor  is there a large 

separation in scores? 



Conclusions

Run Time

AccuracyData 
Volume

We have a triad of issues:



Conclusions from a Big 
Data Perspective:
At this point, we are either:
 Accurate on a small portion of the data 

on any window of time.
 Accurate on all of the data given 

infinite amount of storage space 
… or … 

 Able to classify volumes of social 
inferences in real time with low 
confidence.
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Extra slides follow..



Ranking Alternatives:
Structure A and q:
1) Persona x Persona

2) Persona x Time
3) Persona x Persona x Time

SDD

Select Ranking Function:
1) Cosine

2) Euclidean
3) Jaccard
4) Pearson

Evaluate 
Performance
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